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Abstract: The overall evaluation of small autonomous hybrid power systems (SAHPS) that contain renewable and
conventional power sources depends on economic and environmental criteria, which are often conflicting
objectives. The solution of this problem belongs to the field of non-linear combinatorial multiobjective
optimisation. In a multiobjective optimisation problem, the target is not to find an optimal solution, but a set
of non-dominated solutions called Pareto-set. The present article considers as an economic objective the
minimisation of system’s cost of energy (COE), whereas the environmental objective is the minimisation of the
total greenhouse gas (GHG) emissions of the system during its lifetime. The main novelty of this article is that
the calculation of GHG emissions is based on life cycle analysis (LCA) of each system’s component. In LCA, the
whole life cycle emissions of a component are taken into account, from raw materials extraction to final
disposal/recycling. This article adopts the non-dominated sorting genetic algorithm (NSGA-II), which in
combination with a proposed local search procedure effectively solves the multiobjective optimisation
problem of SAHPS. Two main categories of SAHPS are examined with different energy storage: lead-acid
batteries and hydrogen storage. The results indicate the superiority of batteries under both economic and
environmental criteria.
1 Introduction
The aim of the optimisation procedure is to find and compare
feasible solutions according to one or more objective
functions. When the examined problem involves one
objective function, the optimisation procedure aims to find
the best feasible solution under the given criterion.
However, the majority of real-world problems involve
simultaneous optimisation of several objective functions.
Generally, these functions contain often conflicting
objectives that cannot be easily expressed in quantitative
terms in order to compare them directly. Therefore a
compromise solution has to be sought in accordance with
the preferences of the decision maker. The mathematical
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process of seeking such a solution is known as multiobjective
programming.

In the design of small autonomous hybrid power systems
(SAHPS), mainly two conflicting objectives are important:
system cost and pollutant emissions. SAHPS usually
operate in isolated areas that are far from the grid. A
fundamental characteristic of such systems is that they
have low energy demand [1]. A large portion of this
demand is usually served by conventional generators such
as diesel generators, although renewable energy sources
(RES) technologies combined with electricity storage
technologies can be also used, as large amounts of RES
are usually present in these areas. Conventional
IET Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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generators produce power on demand in an economic way,
and when used in combination with RES technologies,
they can provide backup power during times of
insufficient renewable production. On the other hand,
conventional generators emit large amounts of pollutants
such as CO2 through direct emissions from system
operation (e.g. fuel consumption), and through emissions
generated during the whole life cycle of these systems, as
estimated through life cycle analysis (LCA) methodology.
RES and electricity storage technologies do not emit
during their operation; however, in their whole life cycle,
they may produce significant amounts of pollutant
emissions.

In a multiobjective optimisation problem, such as the one
addressed in this paper, the comparison of two solutions x
and y can lead to the following three results: (i) x
dominates y (i.e. x is better than y in at least one objective,
and no worse in all the others), (ii) y dominates x or (iii)
no solution dominates the other (x is better than y on some
objectives, but y is better than x on other objectives). The
solutions that are non-dominated within the entire search
space are denoted as Pareto-optimal and constitute the
Pareto-optimal set. After a set of such non-dominated
solutions is found, a user can then use higher-level
qualitative considerations to make a choice [2].

For the solution of multiobjective optimisation problems
numerous conventional methods have been proposed, such
as the weighted sum method [3, 4], the 1-constraint
method [5], goal programming methods [6, 7] and so on.
These methods convert the moltiobjective optimisation
problem into a single objective optimisation problem by
either aggregating the objective functions or optimising the
most important objective and treating the others as
constraints. However, in real-world problems, a number of
complicating factors may occur, such as non-linearities,
non-convexity, randomness or non-standard constraints
and feasibility conditions, which make the resulting model
difficult to solve by these methods. Moreover, all
conventional methods require some problem knowledge,
such suitable weights, the value of 1 or target values. The
application of these methods to the economic and
environmental evaluation of SAHPS is often viewed as
contradictory, because of the failure of mainstream
economics to properly account for the environmental and
health costs of conventional power sources, the opportunity
costs of conventional energy, the trade-offs between cost
and price fluctuation and so on.

Recently, various algorithms have been developed, mainly
from the area of metaheuristics, which efficiently tackle the
above-mentioned problems. Metaheuristics orchestrate an
interaction between local improvement procedures and
higher level strategies to create a process capable of
escaping from local optima and performing a robust search
of a solution space, and they are often inspired by the study
of natural processes. The vast majority of multiobjective
T Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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metaheuristic algorithms belongs to the category of genetic
algorithms (GAs) [8]. The main reason is that GAs handle
inherently a population of possible solutions, instead of a
single solution, so they propose a set of alternative solutions
in problems involving several objectives in one single
simulation run [2].

Various methodologies have been proposed for the
multiobjective evaluation of small hybrid power systems.
A multiobjective GA is proposed in [9] in order to
minimise six objective functions related to system’s
performance and CO2 emissions. In [10], a multiobjective
GA is developed that minimises cost, pollutant emissions
and unmet load of such a system. The authors of [10]
have also developed HOGA software [11], which uses a
multiobjective GA in order to minimise the net present
cost, the CO2 emissions and the unmet load of a hybrid
power system. In [12], a multiobjective GA has been used
for the optimisation of the cost and CO2 emissions of an
isolated system of a network in which three hotels and a
town were thermally and electrically supplied. HOMER
software [13] uses the weighted sum method for the
multiobjective optimisation of a hybrid power system, as it
initially considers a penalty cost associated with the
pollutant emissions, and then minimises the overall net
present cost. However, all these methodologies [9–13]
consider only the direct emissions of system’s components
because of system operation. LCA analysis of SAHPS is
implemented in [14, 15]; however, LCA is not combined
with economic analysis in a multiobjective optimisation
framework.

This paper proposes an economic and environmental
multiobjective formulation of SAHPS evaluation. The
economic objective function is system’s cost of energy
(COE), whereas the environmental objective function is the
total CO2 equivalent (CO2-eq.) emissions. The main
novelty of the proposed methodology is the consideration
of LCA results for the calculation of CO2-eq. emissions.
The different locations of a product’s CO2-eq. emissions
during its life cycle are unimportant, as the incremental
impact on global warming will be the same [16]. This
paper adopts the non-dominated sorting genetic algorithm
(NSGA-II), which in combination with a proposed local
search procedure effectively solves the multiobjective
optimisation problem of SAHPS.

The paper is organised as follows. Section 2 formulates the
multiobjective optimisation problem of SAHPS. Section 3
provides a brief description of LCA in power systems,
whereas Section 4 presents the main characteristics of
multiobjective GA. Section 5 describes the proposed
multiobjective GA methodology for the solution of the
multiobjective optimisation problem of SAHPS. Section 6
presents and discusses the obtained results and shows how
the results are improved because of the proposed local
search procedure that is combined with NSGA-II. Section
7 concludes the paper.
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2 Problem formulation
This paper deals with the economic and environmental
evaluation of a SAHPS, and belongs to the category of
non-linear combinatorial multiobjective optimisation
problems. This multioblective optimisation problem has to
fulfil the two objectives defined by (1) and (3) subject to
constraints (4)–(10). In particular, the problem is
formulated as follows.

2.1 First objective

Minimisation of system’s COE (E/kWh)

min(COE) (1)

The COE of SAHPS is calculated as follows

COE = Cantot

Eanloadserved

(2)

where Cantot (E) is the total annualised cost and Eanloadserved

(kWh) is the total annual useful electric energy production.
Cantot takes into account the annualised capital costs, the
annualised replacement costs, the annual operation and
maintenance (O&M) costs, the annual fuel costs (if
applicable) of system’s components, and the discount rate
utilised. The discount rate represents the opportunity cost
of capital, and is probably the most important of the above-
mentioned factors, as it greatly affects the whole economics
of the project and the decision making [17]. Typical
discount rate values for electricity generation projects range
from 5 to 10% [18]. In this paper, a value of 8% has been
adopted for a project lifetime of 20 years.

2.2 Second objective

Minimisation of system’s components total GHG emissions
GHGtot (tn CO2-eq.), based on LCA during the lifetime of
the system

min(GHGtot) (3)

2.3 Constraints

1. Initial cost constraint: The available budget (total initial
cost at the beginning of system’s lifetime) is limited

IC ≤ ICmax (4)

where IC (E) is the initial installation cost of the system, and
ICmax (E) is the maximum acceptable initial cost of the
system.

2. Unmet load constraint: The annual unmet load (which was
not served because of insufficient generation), expressed as a
percentage of the total annual electrical load, cannot exceed a
6
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fixed value

fUL =
∑year

Dt (ULDtDt)

Eanload

≤ fULmax (5)

where fUL is the annual unmet load fraction, ULDt (kW) is
the unmet load during the simulation time step Dt (h),
Eanload (kWh) is the total annual electric energy demand,
and fULmax is the maximum allowable annual unmet load
fraction.

3. Capacity shortage constraint: The annual capacity shortage
fraction, which is the total annual capacity shortage divided
by the total annual electric energy demand, cannot exceed a
fixed value. Capacity shortage is defined as a shortfall that
occurs between the required amount of operating capacity
(load plus required operating reserve) and the actual
operating capacity the system can provide. Operating
reserve in a SAHPS with renewables is the surplus
electrical generation capacity (above that required to meet
the current electric load) that is operating and is able to
respond instantly to a sudden increase in the electric load
or a sudden decrease in the renewable power output

fCS =
∑year

Dt (CSDtDt)

Eanload

≤ fCSmax (6)

where fCS is the annual capacity shortage fraction, CSDt (kW)
is the capacity shortage during Dt, and fCSmax is the
maximum allowable annual capacity shortage fraction.

4. Fuel consumption constraint: The maximum amount of
each fuel that is consumed throughout a year cannot exceed
a specific limit

∑year

Dt

FCogenDt ≤ FCoangenmax (7)

where FCogenDt is the fuel consumption of a generator during
Dt, and FCoangenmax is the maximum allowable annual fuel
consumption of the generator.

5. Minimum renewable fraction constraint: The portion of
system’s total energy production originating from RES
technologies must be greater than or equal a specified
minimum limit

fRES = EanRES

Eantot

≥ fRESmin where 0 ≤ fRESmin ≤ 1 (8)

where fRES is the RES fraction of the system, EanRES (kWh)
is the total annual renewable energy production, Eantot (kWh)
is the total annual energy production of the system, and
fRESmin is the minimum allowable RES fraction.
IET Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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6. Components’ size constraints: The sizes of each system’s
component must lie between specific limits

sizecomp ≥ 0 ∀ comp (9)

sizecomp ≤ sizecompmax ∀ comp (10)

where sizecomp is the size of system’s component comp, and
sizecompmax is the maximum allowable size of comp.

3 LCA of power systems
LCA is usually limited to environmental issues only,
although it could also imply the assessment of other issues,
such as social or economic. LCA is divided into four
phases: (i) goal definition and scoping, (ii) inventory
analysis, (iii) impact assessment and (iv) interpretation.

In the power systems area, LCA considers not only
emissions from each component’s construction, operation
and decommissioning, but also the environmental burdens
associated with the entire lifetime of all relevant upstream
and downstream processes within the energy chain. This
includes exploration, extraction, processing and transport
of the energy carrier, as well as waste treatment and
disposal. The direct emissions include releases from the
operation of power system’s components, processing
factories and transport systems. Moreover, it includes
indirect emissions originating from manufacturing and
transport of materials, from energy inputs to all steps of the
chain and from infrastructure [19].

Electricity generation from conventional sources is a major
source of CO2, SO2, NOx and particulate matter; it also
produces large quantities of solid waste and contributes to
water pollution. On the other hand, in renewable energy
technologies, power generation emits negligible quantities
of pollutants; however, there are considerable emissions
that are associated with the material procurement,
manufacturing and transportation. Moreover, high levels of
intermittent supply sources, such as solar or wind, require
the installation of storage options, which should also be
included in the LCA of the overall system.

The LCA results that are focused on assessing greenhouse
gas (GHG) emissions of energy systems are expressed in
terms of CO2-eq. emissions. This means that CO2 and
other GHGs, such as CH4 and N2O, have been included
in the assessment. However, other GHGs have different
effects on the climate and may have a different atmospheric
life span. To take into account these differences, each
GHG is converted to an equivalent of CO2 and is added
to the inventory. For example, a gram of CH4 has a global
warming potential of 21 and a gram of N2O has a global
warming potential of 310, relative to a gram of CO2 over a
100-year period [20].
T Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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4 Overview of GAs and NSGA-II
methods
4.1 Genetic algorithms

GAs mimic natural evolutionary principles to constitute
search and optimisation procedures, and can be classified in
two categories:

1. Binary GAs: They borrow their working principle directly
from natural genetics, as the variables are represented by bits
of zeros and ones. Binary GAs are preferred when the
problem consists of discrete variables.

2. Continuous GAs: Although they present the same working
principle with binary GAs, the variables here are represented
by floating-point numbers over whatever range is deemed
appropriate. Continuous GAs are ideally suited to handle
problems with a continuous search space.

The first step of a GA is the random generation of the
initial population. Then a GA follows an iterated procedure
that consists of the following steps:

1. Evaluation of objective(s) function(s).

2. Reproduction of population, which makes duplicates of
good solutions and eliminates bad solutions.

3. Crossover, in which existing population members
(parents) are mated in order to produce new population
members (offspring).

4. Mutation, which randomly changes the values at a portion
of population members.

In a single objective optimisation, there is one goal: the
search for an optimum solution. However, in multiobjective
optimisation there are two goals that are equally important:

1. To find a set of solutions as close as possible to the Pareto-
optimal set.

2. To find a set of solutions as diverse as possible.

4.2 NSGA-II method

Numerous GAs have been proposed in the literature for the
solution of multiobjective optimisation problems [2]. The
approach adopted in this paper is the non-dominated
sorting GA (NSGA-II) [21]. In this algorithm, the
population is sorted into different non-domination levels,
and in each solution is assigned a fitness equal to its non-
domination level (1 is the best level). The NSGA-II
procedure includes the following steps:

1. Combination of parent and offspring population in order
to create the entire population set Rt, and execution of a
407
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non-dominated sorting to Rt. In case of constraints existence,
a solution x dominates solution y if any of the following
conditions are true:

a) Solution x is feasible and solution y is not.

b) Solutions x and y are both infeasible, but solution x has a
smaller constraint violation.

c) Solutions x and y are feasible and solution x dominates
solution y.

2. Descending sorting of each produced non-dominated set
population according to crowding distance criterion, which
estimates the diversity of each solution.

3. Creation of offspring population from parent population
by using the reproduction, crossover and mutation operators.

5 Proposed methodology
In order to evaluate the economic and environmental
performance of SAHPS, two different types of systems
have been modelled that contain different options for
electricity storage. More specifically, the first type uses
batteries as a storage means and can contain wind turbines
(WTs), fixed mono-Si photovoltaics (PVs), generator with
diesel fuel, generator with biodiesel fuel, fuel cells (FC)
combined with reformer with natural gas as a fuel, lead-
acid batteries and converter. The second type of system
uses hydrogen for storage and can contain WTs, PVs,
diesel and biodiesel generators, FC with hydrogen fuel,
electrolyser, hydrogen tank and converter.

The considered sizes of each component can take only
discrete values, so the binary GA is selected. Two
alternative GA coding schemes are examined: conventional
binary coding and gray coding. Moreover, for the
constraint handling of the proposed GA the penalty
function approach is adopted, in which an exterior penalty
term that penalises infeasible solutions is used. Since
different constraints may take different orders of
magnitude, prior to the calculation of the overall penalty
function all constraints are normalised.

The SAHPS component modelling is implemented as
follows. The WT power output estimation is managed
through its power curve fitting by a seventh-order
polynomial curve. For the calculation of PV power, solar
radiation data, ambient temperature data and geographic
location data are taken into account. The diesel generator
fuel consumption F (L/kWh) is assumed to be a linear
function of its electrical power output [22]

F = 0.08415Prated + 0.246P (11)

where Prated is generator’s rated power and P is generator’s
output power. When biodiesel is used instead of diesel, fuel
8
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consumption is increased [23]. In this paper, a 10%
increase in fuel consumption has been considered.
Moreover, a 30% minimum allowable load ratio of Prated

has been assumed for each type of generator. The FC and
electrolyser efficiencies have been considered 50 and 65%,
respectively [24]. Lead-acid batteries have been modelled
assuming maximum charge and discharge current equal to
C/5 [25]. Finally, converter efficiency has been taken equal
to 90%.

Renewable power sources (WTs and PVs) have a priority
in supplying the electric load. If they are not capable to
fully serve the load, the remaining electric load has to be
supplied by generators and/or electricity storage
technologies. From all possible combinations, it is selected
the one that supplies the load at the least cost. An
additional aspect of system operation is whether (and how)
the generators should charge the storage means. In this
paper, the load following strategy is adopted, in which the
storage technologies are charged by renewable power
sources and not by generators.

The LCA CO2 equivalent emissions of the considered
SAHPS components are calculated per amount of energy
produced or stored (kg CO2-eq./kWh). The normalisation
of GHG emissions over energy units is more appropriate
than the normalisation of GHG emissions over component
capacity, since some components are used at full capacity
for most of the year, whereas others do not present such a
high availability [26]. The values that are adopted in this
paper are shown in Table 1. It has to be noted that the
LCA GHG emissions of power systems’ converters are not
examined individually in the bibliography. The only related
information is included in the LCA GHG emissions
analysis of PV systems, in which the contribution of
the inverter (part of the converter) is less than 1% of the
overall PV system [27]. For this reason, in this paper the
emissions of converters are considered negligible.

The NSGA-II of Section 4.2 in combination with a
proposed local search procedure (Section 6.2) effectively
solves the multiobjective optimisation problem of SAHPS
of Section 2 as will be shown in Section 6.

6 Results and discussion
6.1 Case study system

In the considered SAHPS, the annual peak load has been
taken equal to 50 kW, while the wind, solar and
temperature data needed for the estimation of WT and PV
performance refer to the Chania region, Crete, Greece.
The average wind speed is 6.14 m/s at 10 m, the Weibull
shape parameter is 1.54 and the Weibull scale parameter is
7.10 m/s. The average daily global solar radiation is
4.62 kWh/(m2 d) and the average temperature is 17.078C.
The height above sea level of the studied SAHPS is
considered to be 500 m and the related atmospheric
IET Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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pressure is considered 95.5 kPa. The simulation time step Dt
is taken equal to 10 min (1/6 h), while the operating reserve
inputs, needed for the calculation of system’s capacity
shortage, have been considered as 7% of the average 10 min
load, 40% of the average 10 min WT output and 20% of

Table 1 LCA CO2 equivalent emissions of system’s
components

Component GHG emissions
(kg CO2-eq./kWh)

WT (mean wind speed 6.5 m/s)
[28]

0.011

PV (mono-Si) [29] 0.045

diesel generator [30] 0.880

biodiesel generator [31] 0.191

fuel cell (hydrogen production
through natural gas reforming)
[26]

0.664

fuel cell (hydrogen production
through electrolysis) [14]

0.020

electrolyser and hydrogen tank
[14]

0.011

lead-acid battery [32] 0.028

converter 0
T Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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the average 10 min PV output. The values of parameters
involved in constraints (4)–(8) are: ICmax ¼ 300 000 E,
fULmax ¼ 0.5%, fCSmax ¼ 1.0%, fRESmin ¼ 50%, maximum
allowable annual biodiesel consumption 10 000 L/year,
unlimited fuel consumption for diesel and natural gas.

The cost, lifetime and size characteristics for each
component of the two case studies are presented in
Table 2. For each component, the minimum size is equal
to zero. Batteries have been modelled according to the
following technical characteristics per component: efficiency
85%, capacity 625 Ah, voltage 12 V and minimum state of
charge 30%. Moreover, with the exception of diesel and
biodiesel generators, all components have constant
increment of their size, as Table 2 shows. The considered
sizes for the generators are 0, 3, 5, 7.5, 10, 15, 20, 25, 30,
35, 40 and 50 kW.

6.2 NSGA-II optimal setting and results
for SAHPS with lead-acid battery storage

During the investigation of the parameter values that ensure
optimum performance of NSGA-II, the population Npop

was kept equal to 100, as the decrease of population has
resulted in a significant decrease in the number and the
diversity of the optimal set of non-dominated solutions.
On the other hand, the population growth of the GA
may improve its performance after a large number of
generations, but it is also leading to a significant increase
in the number of performed simulations. For this reason,
Table 2 Component characteristics

Component sizecompmax Increment Capital cost Replacement
cost

O&M cost Fuel cost Lifetime

WT (hub height 30 m,
rated power 10 kW)

10 WTs 1 WT 15 000
E/WT

12 000 E/WT 300 E/WT/
year

— 20 years

PV 60 kWp 1 kWp 5000 E/kWp 4500 E/kWp 0 — 25 years

generator (diesel fuel) 50 kW variable 200 E/kW 200 E/kW 0.01 E/h/
kW

1.0 E/L 20 000 h of
operation

generator (biodiesel
fuel)

50 kW variable 200 E/kW 200 E/kW 0.01 E/h/
kW

1.4 E/L 20 000 h of
operation

FC + reformer
(natural gas fuel)

40 kW 4 kW 2000 E/kW 2000 E/kW 0.02 E/h/
kW

0.3 E/m3 40 000 h of
operation

battery 150 Bat 10 Bat 700 E/Bat 700 E/Bat 0 — 9000 kWh

FC (hydrogen fuel) 40 kW 4 kW 2000 E/kW 2000 E/kW 0.02 E/h/
kW

— 40 000 h of
operation

electrolyser 60 kW 4 kW 1200 E/kW 1200 E/kW 30 E/kW/

year
— 15 years

hydrogen tank 60 kg 4 kg 800 E/kg 800 E/kg 10 E/kg/
year

— 25 years

converter 60 kW 2 kW 1000 E/kW 1000 E/kW 0 — 10 years
409
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at the end of this section there is a comparison between the
performance of a GA with Npop ¼ 100 combined with a
local search procedure, and the performance of a GA with
Npop ¼ 200.

The performance of the GA was tested according to
crossover type, mutation rate, coding type and number of
generations. The optimal results are obtained for uniform
crossover and mutation rate equal to 0.01. Moreover, Fig. 1
shows that the gray coding increases the number and the
diversity of non-dominated solutions and improves their
quality.

Fig. 2 shows the non-dominated solutions set for different
numbers of GA generations. As can be seen, a satisfactory set
of solutions arises from the 50th generation, which is
improved slightly in the following generations, but with a
concomitant increase in computational burden. For this
reason, the non-dominated set of the 50th generation will
be used as the basis for the local search procedure.

In order to further improve the quality of NSGA-II
results, a methodology that combines local search and
classification of non-dominated solutions is used. Initially,
a local search procedure is applied in each member of the
non-dominated solutions set, and then classification takes
place, thereby resulting in a new set of non-dominated
solutions (first generation of local search). In the new set, a
0
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new local search procedure and reclassification is applied.
The process continues until no new members are entering
the non-dominated set. Fig. 3 shows the results for
different GA populations and different stages of local
search. The consideration of double GA population
(Fig. 3b) compared to the initial solution (Fig. 3a) provides
better results (as Fig. 3e shows), larger number of non-
dominated solutions, but also a significant increase in the
number of simulations performed (5200 against 2600). The
first generation of the local search procedure of the initial
solution (Fig. 3c) produces a wider set of non-dominated
solutions compared to Fig. 3a, without increasing
significantly the number of simulations (2971). The last
generation of the local search procedure (Fig. 3d ) provides
better results than Fig. 3b for the vast majority of solutions
(see also Fig. 3e), while the number of simulations increases
from 5200 to 6561. If the local search procedure is applied
to the results of Fig. 3b, it will also produce the non-
dominated set of Fig. 3d. However, the number of required
simulations will be increased from 6561 to 7053. The
computational time needed for NSGA-II without local
search is 138.7 min, whereas the NSGA-II with
local search requires 317.2 min. The final results of the
local search procedure are presented in Table 3, while
Table 4 shows the optimal GA parameters.

The study of Table 3 shows that all non-dominated
solutions include a large number of WTs and batteries,
Figure 1 Effect of coding type on the non-dominated set (50 generations, uniform crossover, 0.01 mutation rate)

a Conventional binary code
b Gray code
c Comparison of the two coding types
IET Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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Figure 2 Effect of generation number gn on the non-dominated set (uniform crossover, 0.01 mutation rate, gray code)

a gn ¼ 30
b gn ¼ 50
c gn ¼ 80
d gn ¼ 100
e Comparison of the four generation numbers
similar capacity of converters (in the range of 40 kW),
PV arrays and FCs with small or zero power. The main
criterion that affects the performance of the two objective
functions is the fuel of generators. More specifically, diesel
fuel presents lower costs and higher CO2-eq. emissions,
whereas biodiesel fuel presents higher costs and lower of
CO2-eq. emissions. WTs present the best combination of
low cost and low CO2-eq. emissions from all available
RES technologies, while the large number of batteries is
essential for the proper operation of SAHPS, in which a
large amount of energy is produced by non-dispatchable
units. The lack of PV arrays can be explained by their high
cost, whereas the lack of FCs with natural gas as a fuel is
Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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explained because of the combination of their high costs
and their high CO2-eq. emissions, as reflected by the
LCA methodology. The consideration of higher WT hub
heights is not changing significantly the results because
of WT size constraint (sizecompmax ¼ 10 WTs), whereas
the installation of a PV tracking system (one axis or
two axis) cannot increase the negligible sizes of the
PVs because of the high additional cost of the tracking
systems.

Having knowledge of the Pareto-optimal set, higher level
information can be used for the selection of one
non-dominated solution. The simplest way is to consider a
411
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Figure 3 Effect of population size Npop and local search procedure on the non-dominated set (gn ¼ 50, uniform crossover,
0.01 mutation rate, gray code)

a Npop ¼ 100
b Npop ¼ 200
c First local search generation of a
d Last local search generation of a
e Comparison of the four examined cases
CO2-eq. emission cost (in E/tn), and then calculate the
updated COE value. In any case, the optimal solution will
be contained in the non-dominated set, as each other
feasible solution is dominated by at least one Pareto-optimal
solution. Table 5 presents the optimal solutions and
their related updated COE for five values of CO2-eq.
emission cost. For zero emission cost, the second objective
is not taken into account, so solution 1 of Table 3 is
selected. The increase of the CO2-eq. cost leads to
solutions with lower CO2-eq. emissions, until the last
solution of Table 3 (that minimises CO2-eq. emissions) is
reached.
2
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6.3 NSGA-II optimal setting and results
for SAHPS with hydrogen tank storage

For the economic and environmental evaluation of a
SAHPS with hydrogen tank, the NSGA-II algorithm is
used with parameter values presented in Table 4. The
results obtained from the GA are depicted in Fig. 4a,
the overall results after local search are depicted in
Fig. 4b, whereas Fig. 4c depicts these results in the same
graph. These results prove the necessity of the local
search procedure, as it increases significantly not only the
number of non-dominated solutions but also their
IET Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
doi: 10.1049/iet-rpg.2009.0076
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Table 3 Final non-dominated set for SAHPS with lead-acid battery storage

Solution
number

Component sizes Objective function values

WT PV (kWp) Dsl (kW) Bio
(kW)

FC (kW) Bat Conv
(kW)

COE
(E/kWh)

CO2-eq. emissions
(tn)

1 9 2 25 3 0 110 36 0.225991 734.906

2 9 2 25 3 0 110 42 0.226492 692.165

3 9 2 25 3 0 120 42 0.226870 668.465

4 9 1 25 3 0 140 42 0.227357 647.528

5 9 4 20 7.5 0 100 40 0.227855 644.319

6 9 4 20 7.5 0 110 38 0.227940 635.057

7 9 4 20 7.5 0 110 40 0.228246 622.168

8 9 4 20 7.5 0 120 38 0.228444 614.800

9 9 3 20 7.5 0 130 40 0.228579 598.455

10 9 3 20 7.5 0 140 38 0.228906 594.359

11 10 1 20 7.5 0 110 42 0.228998 594.079

12 9 3 20 7.5 0 130 42 0.229014 586.649

13 10 1 20 7.5 0 120 40 0.229032 585.040

14 9 3 20 7.5 0 140 40 0.229163 580.639

15 10 1 20 7.5 0 120 42 0.229339 571.926

16 10 0 20 7.5 0 130 44 0.229523 555.013

17 10 0 20 7.5 0 140 42 0.229719 549.783

18 10 0 20 7.5 0 140 44 0.230077 536.866

19 10 0 20 7.5 0 140 46 0.230710 527.063

20 10 1 20 7.5 0 130 48 0.231881 524.365

21 10 1 20 10 0 130 48 0.234017 523.170

22 10 0 15 15 0 120 42 0.236352 515.731

23 10 0 15 15 0 130 40 0.236429 512.493

24 10 0 15 15 0 130 42 0.236439 499.271

25 10 0 15 15 0 130 44 0.236648 488.586

26 10 0 15 15 0 140 42 0.236685 484.372

27 10 0 15 15 0 140 44 0.236895 473.507

28 10 0 15 15 0 140 46 0.237421 465.097

29 10 1 15 15 0 130 48 0.238507 462.949

30 10 0 7.5 20 0 140 42 0.242320 365.568

31 10 0 7.5 20 0 140 44 0.242321 358.584

32 10 0 7.5 20 0 140 46 0.242666 353.211

33 10 1 7.5 20 0 130 48 0.243795 352.328

34 10 1 3 25 0 130 44 0.247778 286.369

Continued
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Table 3 Continued

Solution
number

Component sizes Objective function values

WT PV (kWp) Dsl (kW) Bio
(kW)

FC (kW) Bat Conv
(kW)

COE
(E/kWh)

CO2-eq. emissions
(tn)

35 10 2 3 25 0 130 42 0.247839 286.008

36 10 1 3 25 0 130 46 0.248195 283.524

37 10 1 3 25 0 130 48 0.248760 281.040

38 9 6 0 30 0 120 42 0.255535 239.498

39 9 6 0 30 0 120 44 0.255640 237.808

Abbreviations used: Dsl ¼ diesel, Bio ¼ biodiesel, Bat ¼ battery, Conv ¼ converter

Table 4 NSGA-II optimum configuration

Parameter Value

population size, Npop 100

number of generations, gn 50, followed by local search

coding type gray code

crossover type uniform

mutation rate 0.01

Table 5 Optimal solution for SAHPS with battery storage
considering CO2-eq. emission costs

CO2-eq. price
(E/tn)

Number of optimum
solution (see Table 3)

COE
(E/kWh)

0 1 0.225991

10 18 0.257652

20 34 0.277195

30 36 0.291883

40 39 0.304498

Figure 4 Non-dominated set for SAHPS with hydrogen storage (Npop ¼ 100, gn ¼ 50, uniform crossover, 0.01 mutation rate,
gray code)

a NSGA-II results
b Last generation of local search
c Comparison of the two examined cases
4 IET Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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Table 6 Final non-dominated set for SAHPS with hydrogen tank storage

Solution
number

Component sizes Objective function values

WT PV
(kWp)

Dsl
(kW)

Bio
(kW)

FC
(kW)

Elctls
(kW)

H2 tank
(kg)

Conv
(kW)

COE
(E/kWh)

CO2-eq.
emissions (tn)

1 9 0 20 10 12 20 12 20 0.297938 1517.477

2 9 0 20 10 12 20 16 20 0.298429 1507.687

3 9 0 20 10 12 20 20 20 0.299478 1502.522

4 9 1 20 10 12 20 16 20 0.300391 1501.585

5 9 0 20 10 12 20 24 20 0.300655 1497.532

6 9 1 20 10 12 20 20 20 0.301445 1496.344

7 10 0 20 10 12 20 8 20 0.301466 1493.239

8 10 0 20 10 12 20 12 20 0.301588 1478.120

9 9 0 20 10 12 24 16 24 0.302032 1477.976

10 10 0 20 10 12 20 16 20 0.302045 1468.013

11 10 0 20 10 12 20 20 20 0.302983 1461.658

12 9 1 20 10 16 24 20 24 0.304885 1434.335

13 10 0 20 10 16 24 16 24 0.305261 1404.882

14 10 0 20 10 16 24 20 24 0.306049 1396.990

15 10 0 20 10 16 24 24 24 0.307123 1391.926

16 10 1 20 10 16 24 20 24 0.308052 1391.031

17 10 0 20 10 16 24 28 24 0.308254 1387.255

18 9 0 15 15 12 20 12 20 0.309121 1326.525

19 9 0 15 15 12 20 16 20 0.309406 1319.740

20 9 0 15 15 12 20 20 20 0.310278 1316.152

21 9 1 15 15 12 20 16 20 0.311241 1315.411

22 9 0 15 15 12 20 24 20 0.311364 1311.890

23 9 1 15 15 12 20 20 20 0.312114 1311.791

24 10 0 15 15 12 20 12 20 0.312244 1294.867

25 10 0 15 15 12 20 16 20 0.312433 1287.813

26 10 0 15 15 12 20 20 20 0.313220 1283.310

27 10 0 15 15 12 20 24 20 0.314212 1279.240

28 10 0 15 15 12 24 16 24 0.315121 1264.047

29 10 0 15 15 12 24 20 24 0.315483 1256.503

30 9 1 15 15 16 24 20 24 0.315815 1253.688

31 10 0 15 15 16 24 16 24 0.315900 1229.543

32 10 0 15 15 16 24 20 24 0.316449 1223.698

33 10 0 15 15 16 24 24 24 0.317367 1219.980

34 10 0 15 15 16 24 28 24 0.318430 1216.512

Continued
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Table 6 Continued

Solution
number

Component sizes Objective function values

WT PV
(kWp)

Dsl
(kW)

Bio
(kW)

FC
(kW)

Elctls
(kW)

H2 tank
(kg)

Conv
(kW)

COE
(E/kWh)

CO2-eq.
emissions (tn)

35 10 1 15 15 16 24 24 24 0.319354 1215.585

36 10 0 15 15 16 24 32 24 0.319605 1212.780

37 9 0 15 15 16 32 20 32 0.320110 1212.098

38 9 0 15 15 16 32 24 32 0.320371 1204.603

39 9 0 15 15 16 32 28 32 0.321044 1198.187

40 9 0 15 15 16 32 32 32 0.321968 1193.232

41 10 0 15 15 16 32 20 32 0.322069 1174.037

42 10 0 15 15 16 32 24 32 0.322391 1167.101

43 10 0 15 15 16 32 28 32 0.322966 1159.325

44 10 0 15 15 16 32 32 32 0.323686 1153.577

45 10 0 15 15 20 32 20 32 0.323858 1148.839

46 10 0 15 15 20 32 24 32 0.324189 1140.493

47 10 0 15 15 20 32 28 32 0.324881 1134.911

48 10 0 15 15 20 32 32 32 0.325884 1130.995

49 10 0 15 15 16 36 32 36 0.326790 1130.159

50 10 0 15 15 20 32 36 32 0.326976 1126.496

51 10 0 15 15 20 36 24 36 0.327435 1117.432

52 10 0 15 15 20 36 28 36 0.327744 1109.577

53 10 0 15 15 20 36 32 36 0.328491 1103.832

54 10 0 15 15 20 36 36 36 0.329449 1098.686

55 10 0 15 15 24 36 24 36 0.329655 1097.042

56 10 0 15 15 24 36 28 36 0.330234 1090.341

57 10 0 15 15 24 36 32 36 0.331070 1085.378

58 10 0 15 15 20 40 32 40 0.331932 1081.574

59 10 0 15 15 24 36 36 36 0.332058 1081.134

60 10 0 15 15 20 40 36 40 0.332601 1073.691

61 10 0 15 15 20 40 40 40 0.333386 1068.172

62 10 0 15 15 24 40 32 40 0.334209 1060.776

63 10 0 15 20 20 40 36 40 0.342832 1054.705

64 10 0 15 20 24 40 28 40 0.344527 1047.467

65 10 0 15 20 24 40 32 40 0.345012 1041.116

66 10 0 15 25 20 40 32 40 0.351947 1037.211

67 10 0 15 25 20 40 36 40 0.352370 1030.182

Abbreviations used: Dsl ¼ diesel, Bio ¼ biodiesel, Elctls ¼ electrolyser, Conv ¼ converter
6 IET Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
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Figure 5 Comparison of the non-dominated sets for SAHPS with different energy storage technologies (batteries and
hydrogen storage)
quality. The total number of performed simulations in the
two cases is 2600 and 5983, respectively. The results
obtained from the local search procedure are presented in
Table 6.

Table 6 shows that the non-dominated solutions set of a
SAHPS containing hydrogen tank continues to include a
large number of WTs. The main difference compared to
the SAHPS containing lead-acid batteries is the significant
increase in the FC size. This is explained by the non-
polluting FC fuel (H2), as well as by the fact that this fuel
is not purchased, but it is produced by the excess electricity
of the system (usually from WTs). Because of the
negligible size of the PV arrays, the electrolyser is powered
mainly from AC generators, and this explains the equality
between the electrolyser and converter sizes in each non-
dominated solution. The comparison of Tables 3 and 6 is
depicted in Fig. 5, and shows that there is a significant
increase in both COE and CO2-eq. emissions in the
SAHPS with hydrogen tank. The increased COE is
explained from the higher electricity storage costs, whereas
the increased CO2-eq. emissions are explained mainly by
the increased fuel consumption of the diesel generator.
More specifically, although the nominal power of the diesel
generators remains in the same order of magnitude, as
Tables 3 and 5 show, their capacity factor is increased
significantly in the SAHPS with hydrogen storage, because
of the significantly lower efficiency of the overall storage

Table 7 Optimal solution for SAHPS with hydrogen storage
considering CO2-eq. emission costs

CO2-eq. price
(E/tn)

Number of optimum
solution (see Table 6)

COE
(E/kWh)

0 1 0.297938

10 2 0.375868

20 46 0.441346

30 62 0.497662

40 62 0.552146
Renew. Power Gener., 2010, Vol. 4, Iss. 5, pp. 404–419
i: 10.1049/iet-rpg.2009.0076
system (electrolyser, hydrogen tank and FC) compared to
lead-acid batteries. Finally, Table 7 presents the optimal
solutions (with respect to Table 6) and their related
updated COE considering five values of CO2-eq. emission
cost.

7 Conclusions
A multiobjective evolutionary algorithm approach for the
optimum economic and environmental performance of
SAHPS is proposed in this paper, taking into account as
environmental criterion the GHG emissions during the life
cycle of each system’s component. Two types of systems are
examined, related to their electricity storage technology:
lead-acid batteries and hydrogen tank combined with fuel
cell. The analysis of each system type has resulted in a large
number of non-dominated solutions, which present
common features as well as significant differences.
Regarding the common features, all solutions include a
large number of wind turbines, PV arrays of small size and
adequate capacity of electricity storage technologies. The
most important factor that affects the economic and the
environmental performance of a solution is the size of
diesel-fuelled generators compared to biodiesel-fuelled
generators. More specifically, large sizes of diesel-fuelled
generators lead to smaller COE and larger CO2-eq.
emissions, whereas large sizes of biodiesel-fuelled
generators lead to opposite results. Furthermore, the use of
FC with natural gas as a fuel is not recommended, because
of their high costs and the high CO2-eq. emissions they
present.

The comparison of the examined electricity storage
technologies shows that there is a significant advantage of
using lead-acid batteries in both the economic and the
environmental criterion. Moreover, in all examined types of
hybrid systems it was proved that the addition of the
proposed local search procedure in the multiobjective
genetic algorithm significantly improves the obtained
results, as it combines the excellent quality and the wide
range of non-dominated solutions, while it is not increasing
prohibitively the computational time.
417
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